If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-50x-35=0
a = 5; b = -50; c = -35;
Δ = b2-4ac
Δ = -502-4·5·(-35)
Δ = 3200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3200}=\sqrt{1600*2}=\sqrt{1600}*\sqrt{2}=40\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-40\sqrt{2}}{2*5}=\frac{50-40\sqrt{2}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+40\sqrt{2}}{2*5}=\frac{50+40\sqrt{2}}{10} $
| -2(n-12)+1=-2n×25 | | -1x+4=2 | | 39+3x=180 | | 12+5*u=u+24 | | 44=-4+8x | | 294/x+16=6 | | 2x+12=9x-37 | | 1/2d+2d=-3/8 | | 350*x7=190 | | 13-4+9u=10u-4 | | 1/2k=43/10 | | -9+8c=8c+6 | | 7d−2=7d | | 7x-2=446 | | 6(2z+4)=5(2z+2) | | 10*a+3,5=18,5 | | 2/5(x+7)=12 | | s+31/2s+1010=46 | | 410=12m+50 | | 1/2*k=43/10 | | 5p+1=-2+5p | | 1,5*y+7=12 | | 3817.04=(π)(r)(15) | | 9z=10+5 | | (3x+8)x=270 | | 7h+8=7h-9 | | 56=-8(w+1) | | -3(3x+5)=2(10-x) | | 7*x-8=2*x+7 | | k=4(5k-11)10 | | 3(3x+5)=2(10-x) | | 0=−16t2+75t+80 |